Kac-moody Groups and Integrability of Soliton Equations Boris Feigin and Edward Frenkel

نویسنده

  • EDWARD FRENKEL
چکیده

Soliton equations describe infinite-dimensional hamiltonian systems. They are closely related to infinite-dimensional Lie groups and algebraic curves. These relations account for complete integrability of soliton equations, i.e. the existence of infinitely many integrals of motion in involution. Recently a new insight has been brought into the theory by the observation that these integrals of motion can be viewed as classical limits of quantum integrals of motion of certain deformations of conformal field theories [Z, EY, HM]. In our previous works [FF1, FF2], using the technique of free field realization of conformal field theories (cf. [F2] for a review), we gave a homological construction of quantum integrals of motion, corresponding to particular deformations. This enabled us to prove the existence of quantum integrals of motion for those deformations. Tracing our construction back to the classical limit, we realized that it provides a new approach to integrability of classical soliton equations, namely, affine Toda equations. Here we will present this approach. We hope that it can be applied to other soliton equations as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Soliton Systems and Langlands Duality

We consider the problem of quantization of classical soliton integrable systems, such as the KdV hierarchy, in the framework of a general formalism of Gaudin models associated to affine Kac–Moody algebras. Our experience with the Gaudin models associated to finite-dimensional simple Lie algebras suggests that the common eigenvalues of the mutually commuting quantum Hamiltonians in a model assoc...

متن کامل

A Geometric Proof of the Feigin-frenkel Theorem

We reprove the theorem of Feigin and Frenkel relating the center of the critical level enveloping algebra of the Kac-Moody algebra for a semisimple Lie algebra to opers (which are certain de Rham local systems with extra structure) for the Langlands dual group. Our proof incorporates a construction of Beilinson and Drinfeld relating the Feigin-Frenkel isomorphism to (more classical) Langlands d...

متن کامل

Lie Symmetries, Kac-Moody-Virasoro Algebras and Integrability of Certain (2+1)-Dimensional Nonlinear Evolution Equations

In this paper we study Lie symmetries, Kac-Moody-Virasoro algebras, similarity reductions and particular solutions of two different recently introduced (2+1)-dimensional nonlinear evolution equations, namely (i) (2+1)-dimensional breaking soliton equation and (ii) (2+1)-dimensional nonlinear Schrödinger type equation introduced by Zakharov and studied later by Strachan. Interestingly our studie...

متن کامل

Stress-Tensor for parafermions by the generalized Frenkel-Kac construction of affine algebras

I discuss a realization of stress-tensor for parafermion theories following the generalized Frenkel-Kac construction for higher level Kac-Moody algebras. All the fields are obtained from d=rank free bosons compactified on torus. This gives an alternative realization of Virasoro algebra in terms of a non-local correction of a free field construction which does not fit the usual background charge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993